Soluble CD40 ligand and Oxidative Response are Reciprocally Stimulated during Shiga Toxin-associated Hemolytic Uremic Syndrome. Running title: Role of sCD40L and oxidative response in HUS
نویسندگان
چکیده
Shiga toxin (Stx) produced by Escherichia coli is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L) which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes, in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions.
منابع مشابه
Soluble CD40 Ligand and Oxidative Response Are Reciprocally Stimulated during Shiga Toxin-Associated Hemolytic Uremic Syndrome
Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release ...
متن کاملInhibitory action of telithromycin against Shiga toxin and endotoxin.
Shiga toxin (Stx)-producing Escherichia coli (STEC) is associated with hemolytic uremic syndrome (HUS). High inflammatory cytokine [interleukin (IL)-6 and IL-8] levels and low anti-inflammatory cytokine (IL-10) levels are indicators of a high risk for developing HUS in STEC-infected children. In this study, we investigated inhibitory action of telithromycin, a ketolide, against STEC and against...
متن کاملEscherichia coli Shiga Toxin Mechanisms of Action in Renal Disease
Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D(+)HUS). D(+)HUS is characterized by thrombocytopenia, microangiopathic hemolyti...
متن کاملInduction of Neutrophil Extracellular Traps in Shiga Toxin-Associated Hemolytic Uremic Syndrome.
Hemolytic uremic syndrome (HUS), a vascular disease characterized by hemolytic anemia, thrombocytopenia, and acute renal failure, is caused by enterohemorrhagic Shiga toxin (Stx)-producing bacteria, which mainly affect children. Besides Stx, the inflammatory response mediated by neutrophils (PMN) is essential to HUS evolution. PMN can release neutrophil extracellular traps (NET) composed of DNA...
متن کاملGenome Sequence for Shiga Toxin-Producing Escherichia coli O26:H11, Associated with a Cluster of Hemolytic-Uremic Syndrome Cases in South Africa, 2017
Shiga toxin-producing Escherichia coli (STEC) strains are primarily foodborne pathogens that may cause diarrheal outbreaks and are associated with severe complications, specifically hemolytic-uremic syndrome (HUS). We report here genome sequence data for STEC O26:H11, which is associated with a cluster of cases of HUS, a rarely described syndrome in South Africa.
متن کامل